Skrining Bakteri Metanotrof, Pelarut Posfat, dan Nitrobacter, pada Lahan Pertanian Kota Sorong, Papua Barat

Authors

  • S Sukmawati Universitas Muhammadiyah Sorong
  • P Ponisri Universitas Muhammadiyah Sorong
  • Febrianti Rosalina Universitas Muhammadiyah Sorong
  • Anif Farida Universitas Muhammadiyah Sorong
  • Budi Satria Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong
  • Ayu Diah Syafaati Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong
  • N Nuryanto Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong

DOI:

https://doi.org/10.31850/jgt.v11i3.1049

Keywords:

methanotrophic bacteria, phosphate solvent bacteria, nitrobacter

Abstract

The effects of greenhouse gases on daily life can cause damage to the balance of ecosystems and threaten the survival of living things. One of them is crop failure; food commodities and export products are reduced, causing food shortages and lowering the economic level of the community. The initial objectives of this study were to find or filter methanotrophic, phosphate-solubilizing, and Nitrobacter bacteria on Sorong's agricultural land. The second aim was to determine methanotrophic bacteria's potential, which can also nitrate and solubilize phosphate. The findings of the screening for methanotrophic bacteria, phosphate-solubilizing bacteria, and Nitrobacter bacteria are described in this descriptive study. In addition, isolates of methanotrophic bacteria were confirmed for their ability to decompose phosphate and fix nitrogen. The results of this study were that of the ten samples observed, five samples were detected by methanotrophic bacteria, namely MFa, MFb, MFc, MFd, and MFe samples. Furthermore, phosphate-solubilizing bacteria and Nitrobacter bacteria were found in ten isolated samples. The second conclusion, from five isolates of methanotrophic bacteria, has the potential to decompose or utilize phosphate as an energy source. Meanwhile, of the five isolates, only three isolates could utilize nitrogen as an energy source, namely isolates with MFa code, MFd isolates, and MFe isolates.

Author Biographies

S Sukmawati, Universitas Muhammadiyah Sorong

Pengolahan Hasil Perikanan, Fakultas Perikanan, Universitas Muhammadiyah Sorong

P Ponisri, Universitas Muhammadiyah Sorong

Kehutanan, Fakultas Pertanian, Universitas Muhammadiyah Sorong

Febrianti Rosalina, Universitas Muhammadiyah Sorong

Agroteknologi, Fakultas Pertanian, Universitas Muhammadiyah Sorong

Anif Farida, Universitas Muhammadiyah Sorong

Teknik Lingkungan, Fakultas Teknik, Universitas Muhammadiyah Sorong

Budi Satria, Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong

Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong, Papua Barat Daya

Ayu Diah Syafaati, Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong

Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong, Papua Barat Daya

N Nuryanto, Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong

Stasiun Pemantau Atmosfer Global (GAW) Kota Sorong, Papua Barat Daya

References

Atekan, A., Nuraini, Y., Handayanto, E., & Syekhfani, S. (2014). The potential of phosphate solubilizing bacteria isolated from sugarcane wastes for solubilizing phosphate. Journal of degraded and mining lands management, 1(4), 175.

Benhadj, M., Gacemi-Kirane, D., Menasria, T., Guebla, K., & Ahmane, Z. (2019). Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. Journal of King Saud University-Science, 31(4), 706-712.

Beveridge, T. J. (2001). Use of the Gram stain in microbiology. Biotechnic & Histochemistry, 76(3), 111-118.

Bhatti, A. A., Haq, S., & Bhat, R. A. (2017). Actinomycetes benefaction role in soil and plant health. Microbial pathogenesis, 111, 458-467.

Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916.

BPS. 2022. Dalam Angka Jumlah Penduduk. https://sorongkota.bps.go.id/indicator/153/124/1/luas-wilayah.html

BPS. 2022. Jumlah Prduksi. https://sorongkota.bps.go.id/indicator/55/281/1/produksi-.html

Change, P. C. (2018). Global warming of 1.5° C. World Meteorological Organization: Geneva, Switzerland.

Devanshi, S., Shah, K. R., Arora, S., & Saxena, S. (2021). Actinomycetes as An Environmental Scrubber. In Crude Oil-New Technologies and Recent Approaches. IntechOpen.

Doney, S. C., Ruckelshaus, M., Emmett Duffy, J., Barry, J. P., Chan, F., English, C. A., & Talley, L. D. (2012). Climate change impacts on marine ecosystems. Annual review of marine science, 4, 11-37.

Dungga, N. E., Syam’un, E., & Amin, A. R. (2018). Towards sustainable agricultural production: Growth and production of three varieties of shallot with some various Nitrobacter bio-fertilizer concentrations. In IOP Conference Series: Earth and Environmental Science (Vol. 157, No. 1, p. 012015). IOP Publishing.

Fan, F., Yu, B., Wang, B., George, T. S., Yin, H., Xu, D., & Song, A. (2019). Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biology and Biochemistry, 135, 213-221.

Friska, W., Khotimah, S., & Linda, R. (2015). Karakteristik bakteri pelarut fosfat pada tingkat kematangan gambut di kawasan hutan lindung gunung Ambawang Kabupaten Kubu Raya. Jurnal Protobiont, 4(1).

Genilloud, O. (2017). Actinomycetes: still a source of novel antibiotics. Natural product reports, 34(10), 1203-1232.

Gerard, M., Vanderplanck, M., Wood, T., & Michez, D. (2020). Global warming and plant–pollinator mismatches. Emerging topics in life sciences, 4(1), 77-86.

Goriely, A., & Tabor, M. (2003). Biomechanical models of hyphal growth in actinomycetes. Journal of theoretical biology, 222(2), 211-218.

Gunawan, R., Anas, I., & Hazra, F. (2010). Produksi masal inokulum Azotobacter, Azospirillum dan bakteri pelarut fosfat dengan menggunakan media alternatif. Jurnal Ilmu Tanah dan Lingkungan, 12(2), 33-39.

Hastuti, R. D., & Ginting, R. C. B. (2007). Enumerasi bakteri, cendawan, dan aktinomisetes. Metode Analisis Biologi Tanah. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan, Badan Penelitian dan Pengembangan Pertanian, Departemen Pertanian. Bogor, 13-22.

He, R., Wooller, M. J., Pohlman, J. W., Tiedje, J. M., & Leigh, M. B. (2015). Methane?derived carbon flow through microbial communities in arctic lake sediments. Environmental Microbiology, 17(9), 3233-3250.

Herlinda. (2006). Isolasi dan Uji Daya Hambat Actinomycetes Asal Tanah Gambut Desa Langkai Kecamatan Siak Terhadap Rhizoctonia solani Kuhn dan Sclerotium rolfsii Sacc. Jurusan Biologi Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Pekanbaru.

Hong, J., Shen, G. Q., Feng, Y., Lau, W. S. T., & Mao, C. (2015). Greenhouse gas emissions during the construction phase of a building: A case study in China. Journal of cleaner production, 103, 249-259.

Ibiene, A. A., Agogbua, J. U., Okonko, I. O., & Nwachi, G. N. (2012). Plant growth promoting rhizobacteria (PGPR) as biofertilizer: Effect on growth of Lycopersicum esculentus. J Am Sci, 8(2), 318-324.

Kiding, A., Khotimah, S., & Linda, R. (2015). Karakterisasi dan kepadatan bakteri nitrifikasi pada tingkat kematangan tanah gambut yang berbeda di kawasan hutan lindung Gunung Ambawang Kabupaten Kubu Raya. Jurnal Protobiont, 4(1).

Kumar, R. R., & Jadeja, V. J. (2016). Isolation of actinomycetes: A complete approach.

Kurniafebi, F. A., & Roza, R. M. (2022). Eksplorasi dan Karakterisasi Parsial Aktinomisetes dari Tanah Mangrove di Kuala Enok Kecamatan Tanah Merah Indragiri Hilir Riau. In Prosiding Seminar Nasional Biologi (Vol. 1, No. 2, pp. 346-357).

Kurniati, D. I., Ardiningsih, P., & Nofiani, R. (2019). Isolasi dan Aktivitas Antibakteri Actinomycetes Berasosiasi dengan Koral. Jurnal Kimia Khatulistiwa, 8(2).

Laffite, A., Florio, A., Andrianarisoa, K. S., Creuze des Chatelliers, C., Schloter?Hai, B., Ndaw, S. M., & Le Roux, X. (2020). Biological inhibition of soil nitrification by forest tree species affects Nitrobacter populations. Environmental microbiology, 22(3), 1141-1153.

Mast, Y., & Stegmann, E. (2019). Actinomycetes: The antibiotics producers. Antibiotics, 8(3), 105.

Medina, A., Gonzalez-Jartin, J. M., & Sainz, M. J. (2017). Impact of global warming on mycotoxins. Current Opinion in Food Science, 18, 76-81.

Millar, N., Robertson, G. P., Grace, P. R., Gehl, R. J., & Hoben, J. P. (2010). Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture. Mitigation and adaptation strategies for global change, 15(2), 185-204.

Nursanti, I. (2017). Teknologi produksi dan aplikasi mikroba pelarut hara sebagai pupuk hayati. Jurnal Media Pertanian, 2(1), 24-36.

Pasgaard, M., & Strange, N. (2013). A quantitative analysis of the causes of the global climate change research distribution. Global environmental change, 23(6), 1684-1693.

Rathore, D. S., Sheikh, M., Gohel, S., & Singh, S. P. (2019). Isolation strategies, abundance and characteristics of the marine actinomycetes of Kachhighadi, Gujarat, India. Journal of the Marine Biological Association of India, 61(1), 71-78.

Saito, S., Kato, W., Ikeda, H., Katsuyama, Y., Ohnishi, Y., & Imoto, M. (2020). Discovery of “heat shock metabolites” produced by thermotolerant actinomycetes in high-temperature culture. The Journal of antibiotics, 73(4), 203-210.

Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. International journal of microbiology, 2020.

Scialabba, N. E. H., & Müller-Lindenlauf, M. (2010). Organic agriculture and climate change. Renewable agriculture and food systems, 25(2), 158-169.

Seebacher, F., & Post, E. (2015). Climate change impacts on animal migration. Climate Change Responses, 2(1), 1-2.

Sharma, N., & Singhvi, R. (2017). Effects of chemical fertilizers and pesticides on human health and environment: a review. International journal of agriculture, environment and biotechnology, 10(6), 675-680.

Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 1-14.

Shukla, J. B., Verma, M., & Misra, A. K. (2017). Effect of global warming on sea level rise: A modeling study. Ecological Complexity, 32, 99-110.

Sulistyani, N., & Akbar, A. N. (2014). Aktivitas isolat actinomycetes dari rumput laut (Eucheuma cottonii) sebagai penghasil antibiotik terhadap Staphylococcus aureus dan Escherichia coli. Jurnal ilmu kefarmasian Indonesia, 12(1), 1-9.

Tidman, R., Abela-Ridder, B., & de Castañeda, R. R. (2021). The impact of climate change on neglected tropical diseases: a systematic review. Transactions of the Royal Society of Tropical Medicine and Hygiene, 115(2), 147-168.

Verma, A. K. (2021). Influence of climate change on balanced ecosystem, biodiversity and sustainable development: An overview. International Journal of Biological Innovations, 3(2).

Wahyuningrum, S. A., Bahar, M., & Pramono, A. P. (2021). Uji Daya Hambat Isolat Actinomycetes sebagai Antibakteri terhadap Pertumbuhan Pseudomonas aeruginosa ATCC 27853 secara In Vitro. Jurnal Kesehatan Andalas, 10(1), 16-22.

Published

23-12-2022

Issue

Section

Articles