Potensi Cendawan Endofit Padi Lokal Sulawesi Selatan Sebagai Penghasil Siderefor

Authors

  • S Syamsia Universitas Muhammadiyah Makassar
  • Abubakar Idhan Universitas Muhammadiyah Makassar
  • Amanda Patappari Firmansyah Universitas Muhammadiyah Makassar
  • N Noerfitryani Universitas Muhammadiyah Makassar

DOI:

https://doi.org/10.31850/jgt.v9i2.659

Keywords:

siderophore, chelating agent, catechol, sodium salicylate

Abstract

Siderophore is an iron-chelating agent produced by plants and microorganisms under iron deficiency conditions. One of the microorganisms that ability produce siderophore is a fungus. This study aimed to determine the potential of endophytic fungi in creating siderophore. The ability of fungi to produce siderophore, especially Salicylate and Catechol using Potato Dextrose Broth (PDB) liquid media and Hathway Reagent. Eight isolates of endophytic fungi from local rice South Sulawesi have tested their ability to produce siderophore. Eight isolates of endophytic fungi before being tested were rejuvenated by growing on Potato Dextrose Agar (PDA) medium for seven days. Each isolate was grown on a PDB medium before being tested. The absorbance is measured using a spectrophotometer at a wavelength of 560 nm with Na. Salicylate 700 nm with 2.3 DHBA as standard. The results showed that the isolates of E4 and E8 had the capability to produce siderophores. The results provide the latest information regarding endophytic fungi' potential from local rice in South Sulawesi as a siderophore producer.

Author Biographies

S Syamsia, Universitas Muhammadiyah Makassar

Fakultas Pertanian

Abubakar Idhan, Universitas Muhammadiyah Makassar

Fakultas Pertanian

Amanda Patappari Firmansyah, Universitas Muhammadiyah Makassar

Fakultas Pertanian

N Noerfitryani, Universitas Muhammadiyah Makassar

Fakultas Pertanian

References

Ahmed, E., & Holmström, S.J.M. 2014. Siderophores in Environmental Research: Roles and Applications. Microbial Biotechnology, 7(3), 196–208. https://doi.org/10.1111/1751-7915.12117.

Anke, Heidrun, Kinn, J., Bergquist, KE., & Sterner, O. (1991). Production of Siderophores by Strains of the Genus Trichoderma. Biology of Metals, 4(3), 176–80. https://doi.org/10.1007/BF01141311.

Aziz, Abdel, O.A., Helal, G.A., Galal, Y.G.M., Kader, A., & Rofaida, S. (2016). Fungal Siderophores Production in Vitro as Affected by Some Abiotic Factors. International Journal of Current Microbiology and Applied Sciences, 5(6), 210–22. https://doi.org/10.20546/ijcmas.2016.506.025.

Fekete, F.A. (1993) Assays for microbial siderophores. In Iron Chelation in Plants and Soil Microorganisms. in Barton, L.L., & Hemming, B.C. (eds). New York: Academic Press, pp. 399–417.

Fekete, F.A., Chandhoke, V., & Jellison, J. (1989) Iron- binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol, 55 (pg. 2720– 2722).

Ghosh, S. K., Banerjee, S., & Sengupta, C. (2017). Bioassay, characterization and estimation of siderophores from some important antagonistic Fungi. Journal of Biopesticides, 10(2), 105-112.

Hussein, K. A., & Joo, J. H. (2019). Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere. Journal of microbiology and biotechnology, 29(1), 105-113.

Johnstone, TC., & Nolan, EM. (2015). Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans, 14 (pg. 6320-6339).

Kesaulya, H., Zakaria, B., & Syaiful, S. A. (2015). Isolation and physiological characterization of PGPR from potato plant rhizosphere in medium land of Buru Island. Procedia Food Science, 3, 190-199.. https://doi.org/10.1016/j.profoo.2015.01.021.

Kobayashi, T., & Nishizawa, N.K. (2012). Iron uptake, trans- location, and regulation in higher plants. Annu Rev Plant Biol, 63, 131–152.

Kraemer, S.M. (2004). Iron oxide dissolution and solubility in the presence of siderophores. Aquat Sci, 66, 3–18.

Ma, J.F. (2005). Plant root responses to three abundant soil minerals: silicon, aluminum and iron. Crit RevPlant Sci, 24, 267–281.

Matzanke, B.F. (1991). Structures, coordination chemistry and functions of microbial iron chelates. In CRC Handbook of Microbial Iron Chelates. Winkelmann, G. (ed.). Boca Raton, FL, USA: CRC Press, pp. 15–64.

Milagres, A. M., Machuca, A., & Napoleao, D. (1999). Detection of siderophore production from several fungi and bacteria by a modification of chrome azurol S (CAS) agar plate assay. Journal of Microbiological Methods, 37(1), 1-6. https://doi.org/10.14219/jada.archive.1964.0123.

Plattner, H., & Diekmann, H. (1994). Enzymology of siderophore biosynthesis. In Metal Ions in Fungi (G. Winkelmann & D. R. Winge, eds) pp. 99-116. Marcel Dekker, New York.

Pratama, Ilham, Advinda, L., & Fifendy, M. (2018). Pengaruh Sumber Karbon Terhadap Produksi Siderefor dari Bakteri Pseudomonas Fluoresence. Bioscience, 2(2), 50. https://doi.org/10.24036/020182210406-0-00.

Prihatiningsih, Nur, Djatmiko, HA., & Lestari, P. (2017). Aktivitas Siderofor Bacillus Subtilis Sebagai Pemacu Pertumbuhan Dan Pengendali Patogen Tanaman Terung. HPT Tropika, 17(2), 170–78.

Schwyn, B., & Neilands, J.B. (1987). Universal chemical assay for the detection and determination of siderophores. Anal Biochem, 160, 47–56.

Sharma, A., & Johri, BN. (2003). Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9, in maize (Zea mays L.) under iron limiting conditions. Microbiol. Res, 158(3), 243–248.

Sivasakthivelan, P., & Stella, D. (2012). Studies on the phytohormone producing potential of agriculturally beneficial microbial (ABM) isolates from different rhizosphere soils of sunflower in Tamil Nadu. International Journal of Pharmaceutical and Biological Archives, 3(5), 1150-1156.

Winkelmann, G. (2002). Microbial siderophore mediated transport. Biochemical Society Transactions, 30, 691-695.

Published

09-09-2020

Issue

Section

Articles