Pertumbuhan Kerang Darah (Tegillarca granosa) pada Berbagai Sistem Akuakultur


  • Arnold Kabangnga Institut Teknologi dan Bisnis Maritim Balik Diwa
  • H Heriansah Institut Teknologi dan Bisnis Maritim Balik Diwa
  • N Nursidi Politeknik Pertanian Negeri Pangkajene dan Kepulauan
  • Canra Kirana Institut Teknologi dan Bisnis Maritim Balik Diwa
  • Febi Safitri Institut Teknologi dan Bisnis Maritim Balik Diwa



blood clams, growth, monoculture, polyculture, IMTA


Many aquaculture wastes are suspended in the water column in that the presence of clams as filter feeders is required to utilize the waste for growth. In this study, blood clams from four aquaculture systems were evaluated to determine their growth, namely monoculture systems, polycultures, Integrated Multi Trophic Aquaculture (IMTA) non-paddy cocultures, and IMTA with paddy cocultures. Blood clams, tilapia, and tiger shrimp are stocked at as much as 20 each in 90 L of brackish water, whereas the density of sea cucumbers is 10 individuals. For paddy, reared using a floating method that uses trays. For four weeks, feed was given four times a day as much as 10% of the biomass. The results showed that the aquaculture system were a significant effect (P<0.05) on Spesific Growth Rate (SGR). The SGR of blood clams when combined with the IMTA systems were significantly higher (P<0.05) than that of the monoculture and polyculture systems. In contrast to growth, morphometric characteristics were not significantly affected (P>0.05) by aquaculture system. Apart from studies in laboratory scale, the highest growth of blood clams is obtained if cultured with complete trophic levels through the IMTA paddy system.

Author Biographies

Arnold Kabangnga, Institut Teknologi dan Bisnis Maritim Balik Diwa

Institut Teknologi dan Bisnis Maritim Balik Diwa

H Heriansah, Institut Teknologi dan Bisnis Maritim Balik Diwa

Institut Teknologi dan Bisnis Maritim Balik Diwa

N Nursidi, Politeknik Pertanian Negeri Pangkajene dan Kepulauan

Politeknik Pertanian Negeri Pangkajene dan Kepulauan

Canra Kirana, Institut Teknologi dan Bisnis Maritim Balik Diwa

Program Studi Budidaya Perairan, Institut Teknologi dan Bisnis Maritim Balik Diwa

MBKM Riset Keilmuan

Febi Safitri, Institut Teknologi dan Bisnis Maritim Balik Diwa

Program Studi Budidaya Perairan, Institut Teknologi dan Bisnis Maritim Balik Diwa

MBKM Riset Keilmuan


Altinok, I., & Ozturk, R. C. (2017). Adverse effects of mariculture activities and practices on marine environment. Oceanography & Fisheries Open Access Journal, 4(1).

Amalia, R., Rejeki, S., Widowati, L. L., & Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas, 23(1): 593–600.

Azad, A. S., Estim, A., Mustafa, S., & Sumbing, M. V. (2017). Assessment of nutrients in seaweed tank from land based integrated multitrophic aquaculture module. Journal of Geoscience and Environment Protection, 05(08): 137–147.

Boyd, C. E., & McNevin, A. A. (2015). Aquaculture, Resource Use, and the Environment. John Wiley & Sons, Inc., Hoboken, New Jersey.

Campanati, C., Willer, D., Schubert, J., & Aldridge, D. C. (2022). Sustainable intensification of aquaculture through nutrient recycling and circular economies: more fish, less waste, blue growth. Reviews in Fisheries Science and Aquaculture, 30(2): 143–169.

Chopin, T., Cooper, J. A., Reid, G., Cross, S., & Moore, C. (2012). Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4(4): 209–220.

Dauda, A. B., Ajadi, A., Tola-Fabunmi, A. S., & Akinwole, A. O. (2019). Waste production in aquaculture: Sources, components and managements in different culture systems. Aquaculture and Fisheries, 4(3): 81–88.

Dewi, S. E., Eddiwan, E., & Efawani, E. (2019). Morphometric and growth patterns of the blood clam (Anadara granosa) from the Bagan Siapi-Api Coastal Area Rokan Hilir. Berkala Perikanan Terubuk, 46(3): 37-45.

Effendie, M. I. (2012). Biologi Perikanan. Yayasan Pustaka Nusatama, Yogyakarta.

Granada, L., Lopes, S., Novais, S. C., & Lemos, M. F. L. (2018). Modelling integrated multi-trophic aquaculture: Optimizing a three trophic level system. Aquaculture, 495: 90–97.

Hamsiah, Cahyono, I., Heriansah, Kantun, W., & Kabangnga, A. (2021). The survival rate of biota in Integrated Multi Trophic Aquaculture (IMTA)-Paddy System. Jurnal Sumberdaya Akuatik Indopasifik, 5(2): 127–136.

Hayati, H., Dirgayusa, I. G. N. P., & Puspitha, N. L. P. R. (2017). Laju pertumbuhan kerang abalon Haliotis squamata melalui budidaya IMTA (Integrated Multi Trophic Aquaculture) di Pantai Geger, Nusa Dua, Kabupaten Badung, Provinsi Bali. JMAS, 4(2): 253.

Henares, M. N. P., Medeiros, M. V., & Camargo, A. F. M. (2018). Overview of strategies that contribute to the environmental sustainability of pond aquaculture?: rearing systems, residue treatment, and environmental assessment tools. Reviews in Aquaculture, 12(1): 453–470.

Heriansah, Syamsuddin, R., Najamuddin, & Syafiuddin. (2022). Growth of Kappaphcus alvarezii in vertical method of multi-trophic system based on feeding rate. Egyptian Journal of Aquatic Biology and Fisheries, 26(5): 1197–1210.

Jiang, S., Zhou, F., Mo, X., Huang, J., Yang, Q., & Yang, L. (2017). Polyculture of sea cucumber Holothuria scabra with pacific white shrimp Litopenaeus vannamei. Israeli Journal of Aquaculture - Bamidgeh, 69.

Juárez-Rosales, J., Ponce-Palafox, J. T., Román-Gutiérrez, A. D., Otazo-Sánchez, E. M., Pulido-Flores, G., & Castillo-Vargasmachuca, S. G. (2019). Effects of white shrimp (Litopenaeus vannamei) and tilapia nilotica (Oreochromis niloticus) in monoculture and co-culture systems on water quality variables and production in brackish low-salinity water earthen ponds during rainy and dry season. Spanish Journal of Agricultural Research, 17(3).

Kabangnga, A., Zulkhairiyah, & Rumambo, C. T. T. (2020). Monitoring dan mitigasi gas H2S limbah organik tambak intensif dengan menggunakan biomarker sederhana. Jurnal Airaha, IX(1), 1–6.

Knowler, D., Chopin, T., Martínez-Espiñeira, R., Neori, A., Nobre, A., Noce, A., & Reid, G. (2020). The economics of Integrated Multi-Trophic Aquaculture: where are we now and where do we need to go? Reviews in Aquaculture, 12(3): 1579–1594.

Lander, T. R., Robinson, S. M. C., MacDonald, B. A., & Martin, J. D. (2013). Characterization of the suspended organic particles released from salmon farms and their potential as a food supply for the suspension feeder, Mytilus edulis in integrated multi-trophic aquaculture (IMTA) systems. Aquaculture, 406–407: 160–171.

Macchiavello, J., & Bulboa, C. (2014). Nutrient uptake efficiency of Gracilaria chilensis and Ulva lactuca in an IMTA system with the red abalone Haliotis rufescens. Latin American Journal of Aquatic Research, 42(3): 523–533.

Melendres, A. R., & Largo, D. B. (2021). Integrated culture of Eucheuma denticulatum, Perna viridis, and Crassostrea sp. in Carcar Bay, Cebu, Philippines. Aquaculture Reports, 20, 100683.

Mulki, A. B. R., Suryono, C. A., & Suprijanto, J. (2014). Variasi ukuran kerang darah (Anadara granosa) di Perairan Pesisir Kecamatan Genuk Kota Semarang. Journal of Marine Research, 3(2): 122–131.

Nederlof, M. A. J., Verdegem, M. C. J., Smaal, A. C., & Jansen, H. M. (2021). Nutrient retention efficiencies in integrated multi-trophic aquaculture. Reviews in Aquaculture, October, 1–19.

Nicholaus, R., Lukwambe, B., Zhao, L., Yang, W., Zhu, J., & Zheng, Z. (2019). Bioturbation of blood clam Tegillarca granosa on benthic nutrient fluxes and microbial community in an aquaculture wastewater treatment system. International Biodeterioration and Biodegradation, 142(818), 73–82.

Reid, G. K., Lefebvre, S., Filgueira, R., Robinson, S. M. C., Broch, O. J., Dumas, A., & Chopin, T. B. R. (2020). Performance measures and models for open-water integrated multi-trophic aquaculture Performance measures and models for open-water integrated multi-trophic aquaculture. Reviews in Aquaculture, 12(1), 47–55.

Ren, J. S., Stenton-dozey, J., Plew, D. R., Fang, J., & Gall, M. (2012). An ecosystem model for optimising production in integrated multitrophic aquaculture systems. Ecological Modelling, 246, 34–46.

Setiadi, E., Widyastuti, Y. R., & Heru Prihadi, T. (2018). Water quality, survival, and growth of red tilapia, Oreochromis niloticus cultured in aquaponics system. E3S Web of Conferences, 47.

Srivastava, A., Chun, S. J., Ko, S. R., Kim, J., Ahn, C. Y., & Oh, H. M. (2017). Floating rice-culture system for nutrient remediation and feed production in a eutrophic lake. Journal of Environmental Management, 203, 342–348.

Thomas, M., Pasquet, A., Aubin, J., Nahon, S., & Lecocq, T. (2021). When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biological Reviews, 96(2), 767–784.

Wulandari, Cokrowati, N., Astriana, B. H., & Diniarti, N. (2019). Penurunan nilai padatan tersuspensi pada limbah tambak udang intensif menggunakan kerang darah (Anadara granosa). Jurnal Kelautan, 12(2), 123–130.

Zhang, J., Zhang, S., Kitazawa, D., Zhou, J., Park, S., Gao, S., & Shen, Y. (2019). Bio-mitigation based on integrated multi-trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Latin American Journal of Aquatic Research, 12(2): 212-223.