Karakterisasi Cendawan Rhizosfer pada Tegakan Mahoni di Hutan Pendidikan Universitas Hasanuddin
DOI:
https://doi.org/10.31850/jgt.v9i3.597Keywords:
fungus, rhizosphere, mahogany, experimental forest unhasAbstract
Soil fungi, which produce hormones that occupy the rhizosphere ecosystem, have roles as agents to promote plant growth. This study aims to isolate rhizosphere fungi in mahogany in the Experiment Forest of Universitas Hasanuddin, and identify the fungal isolates obtained based on morphological characters. The research began with rhizosphere soil sampling, isolation, and identification based on morphological characters. The rhizosphere microbial isolation on mahogany stands in the Unhas Educational Forest obtained 18 fungal isolates with varied morphological characteristics, both in colony color and elevation. Microscopic observations resulted in 4 genera, namely Rhizopus, Gliocladium, Trichoderma, and Aspergillus. The results showed that there were superior fungi isolates that could produce growth hormones and could be applied to forest plant seeds. The formula with these select fungi can give the seeds optimal growth in forest plant seeds.
References
Barnet, A., & Hunter, B. B. (1998). Illustrated Marga of Imperfect Fungi. 3th ed. USA: Prentice-Hall, Inc.
Domsch, K. H., Gams, W., & Anderson, T. H. (1980). Compendium of soil fungi. Volume 1. Academic Press (London) Ltd.
Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica, 2012(1), 1-15.
Gusnawaty, H.S., Taufik, M., Triana, L. & Asniah. (2014). Karakterisasi Morfologis Trichoderma Spp. Indigenus Sulawesi Tenggara. Jurnal Agroteknos, 4(2), 87-93.
Hartana, S. N. (2014). Keanekaragaman Cendawan yang Diisolasi di Lokasi Perkandangan Ayam. Institut Pertanian Bogor. Bogor.
Hindersah, R., & Simarmata, T. (2004). Potensi rizobakteri Azotobacter dalam meningkatkan kesehatan tanah. Jurnal Natur Indonesia, 5(2), 127-133.
Larekeng, S. H., Restu, M., Tunggal, A., & Susilowati, A. (2019, October). Isolation and identification of rhizospheric fungus under Mahoni (Swietenia mahagoni) stands and its ability to produce IAA (Indole Acetid Acid) hormones. In IOP Conference Series: Earth and Environmental Science (Vol. 343, No. 1, p. 012051). IOP Publishing.
Mishra, N., & Sundari, S. K. (2013). Native PGPMs as bioinoculants to promote plant growth: response to PGPM inoculation in principal grain and pulse crops. International Journal of Agriculture Food Science & Technology, 4(10), 1055-1064.
Rao, S. (1996). Root Exudation and Rhizosphere Biology. Columbus (US), Ohio State Univ.
Rodrigues, A. A., Forzani, M. V., Soares, R. D. S., Sibov, S. T., & Vieira, J. D. G. (2016). Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical, 46(2), 149-158.
Sarma, B. K., Singh, U. P., & Singh, K. P. (2002). Variability in Indian isolates of Sclerotium rolfsii. Mycologia, 94(6), 1051-1058.
Simatupang, D. S. (2008). Berbagai Mikroorganisme Rhizosfer pada Tanaman Pepaya (Carica papaya L.) di Pusat Kajian Buah-buahan Tropika (PKBT) IPB Desa Ciomas, Kecamatan Pasirkuda, Kabupaten Bogor, Jawa Barat.[Skripsi]. Institut Pertanian Bogor, Bogor.
Sivaramakrishnan, R., Ramprakash, B., Ramadoss, G., Suresh, S., Pugazhendhi, A., & Incharoensakdi, A. (2021). High potential of Rhizopus treated rice bran waste for the nutrient-free anaerobic fermentative biohydrogen production. Bioresource Technology, 319, 124193.
Sood, M., Kapoor, D., Kumar, V., Sheteiwy, M. S., Ramakrishnan, M., Landi, M., ... & Sharma, A. (2020). Trichoderma: the “secrets” of a multitalented biocontrol agent. Plants, 9(6), 762.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and soil, 255(2), 571-586.