Performa Benih Udang Windu yang Diberi Artemia Diperkaya Taurin

Authors

DOI:

https://doi.org/10.31850/jgt.v10i3.803

Keywords:

performance, tiger prawn, taurine, artemia

Abstract

This study aimed to analyze the performance of tiger prawn Penaeus monodonseed which were fed taurine-enriched Artemia. The study was conducted by using a completely randomized design.The treatment in this research was taurine enrichment dosage of Artemiathat consist of 4 levels: 0 gL-1 (DPT-0), 0.5 gL-1 (DPT-0.5), 1.0 gL-1 (DPT-1.0) and 1.5 gL-1 (DPT-1.5) in triplicate. Larvae stocked at a density of 50 individu.L-1 were fed Artemianauplii from Mysis-3 to PL-12 stages. Measurement and analysis data to compare the effects of these treatments were tested by analysis of variance (ANOVA) followed by Duncan's multiple range test at a significance level of 0.05. The results showed that the taurine content of Artemia increased significantly and linearly with the enrichment dose of taurine. Furthermore, the specific growth rate and visual quality of larvae increased significantly by feeding taurine-enriched Artemiaof 1.0 gL-1, but increasing the taurine enrichment dose to 1.5 gL-1 in the Artemia was not followed by an increase in these parameters. The vitality and resistance of larvae increased significantly and linearly with increasing in taurine enrichment dose, whereas the survival rate for larvae only increased significantly with 0.5 gL-1 taurine-enriched Artemia. Based on these results, the best post-larval performance of tiger prawns was obtained by feedingArtemia enriched with taurine 1.0–1.5 gL-1.

Author Biographies

R Ridwan, Politeknik Pertanian Negeri Pangkep

Program Studi Budidaya Perikanan Jurusan Teknologi Budidaya Perikanan, Politeknik Pertanian Negeri Pangkep

Moh. Adnan Baiduri, Politeknik Pertanian Negeri Pangkep

Jurusan Budidaya Perikanan Politeknik Pertanian Negeri Pangkep

References

AOAC. (2002). 50.1.07A AOAC Official Method 997.05 Taurine in Powdered Milk and Powdered Infant Formulae. AOAC International, 1–2.

Betancor, M. B., Laurent, G. R., Ortega, A., de la Gándara, F., Tocher, D. R., & Mourente, G. (2019). Taurine metabolism and effects of inclusion levels in rotifer (Brachionus rotundiformis, Tschugunoff, 1921) on Atlantic bluefin tuna (Thunnus thynnus L.) larvae. Aquaculture, 510: 353-363. https://doi.org/10.1016/j.aquaculture.2019.05.040

Brill, R. W., Horodysky, A. Z., Place, A. R., Larkin, M. E. M., & Reimschuessel, R. (2019). Effects of dietary taurine level on visual function in European sea bass (Dicentrarchus labrax). PLoS ONE, 14(6), 1–18. https://doi.org/10.1371/journal.pone.0214347

Cahu, C., & Zambonino Infante, J. (2001). Substitution of live food by formulated diets in marine fish larvae. Aquaculture, 200 (1–2), 161–180. https://doi.org/10.1016/S0044-8486(01)00699-8

Chatzifotis, S., Polemitou, I., Divanach, P., & Antonopoulou, E. (2008). Effect of dietary taurine supplementation on growth performance and bile salt activated lipase activity of common dentex, Dentex dentex, fed a fish meal/soy protein concentrate-based diet. Aquaculture, 275(1–4), 201–208. https://doi.org/10.1016/j.aquaculture.2007.12.013

Dehghani, R., Oujifard, A., Mozanzadeh, M. T., Morshedi, V., & Bagheri, D. (2020). Effects of dietary taurine on growth performance, antioxidant status, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517.734795. https://doi.org/10.1016/j.aquaculture.2019.734795

Egée, S., Lapaix, F., Cossins, A. R., & Thomas, S. L. Y. (2000). The role of anion and cation channels in volume regulatory responses in trout red blood cells. Bioelectrochemistry, 52(2), 133–149. https://doi.org/10.1016/S0302-4598(00)00096-9

El-Sayed, A. F. M. (2014). Is dietary taurine supplementation beneficial for farmed fish and shrimp? A comprehensive review. Reviews in Aquaculture, 6(4), 241–255. https://doi.org/10.1111/raq.12042

Flinn, S. A., & Midway, S. R. (2021). Trends in growth modeling in fisheries science. Fishes, 6(1), 1–18. https://doi.org/10.3390/fishes6010001

Gaon, A., Nixon, O., Tandler, A., Falcon, J., Besseau, L., Escande, M., El Sadin, S., Allon, G., & Koven, W. (2021). Dietary taurine improves vision in different age gilthead sea bream (Sparus aurata) larvae potentially contributing to increased prey hunting success and growth. Aquaculture, 533:1-11 (June 2020). https://doi.org/10.1016/j.aquaculture.2020.736129

Gaylord, T. G., Teague, A. M., & Barrows, F. T. (2006). Taurine supplementation of all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Journal of the World Aquaculture Society, 37(4), 509–517. https://doi.org/10.1111/j.1749-7345.2006.00064.x

Goswami, C., & Saha, N. (2006). Cell volume regulation in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions: Roles of inorganic ions and taurine. Journal of Biosciences, 31(5), 589–598. https://doi.org/10.1007/BF02708411

Guizouarn, H., Motais, R., Garcia-Romeu, F., & Borgese, F. (2000). Cell volume regulation: The role of taurine loss in maintaining membrane potential and cell pH. Journal of Physiology, 523(1), 147–154. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00147.x

Hansen, M. H. (2011). Effects of feeding with copepod nauplii (Acartia tonsa) compared to rotifers (Brachionus ibericus, Cayman) on quality parameters in Atlantic cod (Gadus morhua) larvae. Maine Costal Development, May, 1–81.

Hansen, S. H., Andersen, M. L., Birkedal, H., Cornett, C., & Wibrand, F. (2006). The important role of taurine in oxidative metabolis. Advances in Experimental Medicine and Biology, 583, 129–135. https://doi.org/10.1007/978-0-387-33504-9_13

Hansen, S. H., Andersen, M. L., Cornett, C., Gradinaru, R., & Grunnet, N. (2010). A role for taurine in mitochondrial function. Journal of Biomedical Science, 17(SUPPL. 1), 1–8. https://doi.org/10.1186/1423-0127-17-S1-S23

Hawkyard, M., Laurel, B., & Langdon, C. (2014). Rotifers enriched with taurine by microparticulate and dissolved enrichment methods influence the growth and metamorphic development of northern rock sole (Lepidopsetta polyxystra) larvae. Aquaculture. https://doi.org/10.1016/j.aquaculture.2013.12.035

Hoffmann, E. K., Lambert, I. H., & Pedersen, S. F. (2009). Physiology of cell volume regulation in vertebrates. Physiological Reviews, 89(1), 193–277. https://doi.org/10.1152/physrev.00037.2007

Jusadi, D., Ruchyani, S., Mokoginta, I., & Ekasari, J. (2015). Improvement of survival and development of Pacific white shrimp Litopenaeus vannamei larvae by feeding taurine enriched rotifers. Jurnal Akuakultur Indonesia. https://doi.org/10.19027/jai.10.131-136

Katagiri, R., Sasaki, T., Diaz, A., Ando, M., Margulies, D., Scholey, V. P., & Sawada, Y. (2017). Effect of taurine enrichment in rotifer (Brachionus sp.) on growth of larvae of Pacific bluefin tuna Thunnus orientalis (Temminck & Schlegel) and yellowfin tuna T. albacares (Temminck & Schlegel). Aquaculture Research, 48(6), 3013–3031. https://doi.org/10.1111/are.13134

Kim, Y. S., Sasaki, T., Awa, M., Inomata, M., Honryo, T., Agawa, Y., Ando, M., & Sawada, Y. (2016). Effect of dietary taurine enhancement on growth and development in red sea bream Pagrus major larvae. Aquaculture Research. https://doi.org/10.1111/are.12573

Koivusalo, M., Kapus, A., & Grinstein, S. (2009). Sensors, transducers, and effectors that regulate cell size and shape. Journal of Biological Chemistry, 284(11), 6595–6599. https://doi.org/10.1074/jbc.R800049200

Lang, F. (2007). Mechanisms and Significance of Cell Volume Regulation. Journal of the American College of Nutrition, 26(January 2015), 613S-623S. https://doi.org/10.1080/07315724.2007.10719667

Lugert, V., Thaller, G., Tetens, J., Schulz, C., & Krieter, J. (2014). A review on fish growth calculation: Multiple functions in fish production and their specific application. Reviews in Aquaculture, 8(1), 30–42. https://doi.org/10.1111/raq.12071

Marshall, W. S. (2011). Mechanosensitive signalling in fish gill and other ion transporting epithelia. Acta Physiologica (Oxford, England), 202(3), 487–499. https://doi.org/10.1111/j.1748-1716.2010.02189.x

Matsunari, H., Hashimoto, H., Oda, K., Masuda, Y., Imaizumi, H., Teruya, K., Furuita, H., Yamamoto, T., Hamada, K., & Mushiake, K. (2013). Effects of docosahexaenoic acid on growth, survival and swim bladder inflation of larval amberjack (Seriola dumerili, Risso). Aquaculture Research, 44(11), 1696–1705. https://doi.org/10.1111/j.1365-2109.2012.03174.x

Monica, T., Supono, & Linirin Widiastuti, E. (2021). Artemia sp. enrichment with vitamin C and taurine to support growth and survival rate of vaname (Litopenaeus vannamei) larvae: Early study. IOP Conference Series: Earth and Environmental Science, 674(1). https://doi.org/10.1088/1755-1315/674/1/012099

Park, G. S., Takeuchi, T., Yokoyama, M., & Seikai, T. (2002). Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Science, 68(4), 824–829. https://doi.org/10.1046/j.1444-2906.2002.00498.x

Partridge, G. J., & Woolley, L. D. (2017). The performance of larval Seriola lalandi (Valenciennes, 1833) is affected by the taurine content of the Artemia on which they are fed. Aquaculture Research, 48(3), 1260–1268. https://doi.org/10.1111/are.12967

Péres, A., Zambonino Infante, J. L., & Cahu, C. (1998). Dietary regulation of activities and mRNA levels of trypsin and amylase in sea bass (Dicentrarchus labrax) larvae. Fish Physiology and Biochemistry, 19(2), 145–152. https://doi.org/10.1023/A:1007775501340

Perez-Casanova, J. C., Murray, H. M., Gallant, J. W., Ross, N. W., Douglas, S. E., & Johnson, S. C. (2004). Bile salt-activated lipase expression during larval development in the haddock (Melanogrammus aeglefinus). Aquaculture, 235(1–4), 601–617. https://doi.org/10.1016/j.aquaculture.2004.02.001

Pinto, W., Figueira, L., Ribeiro, L., Yúfera, M., Dinis, M. T., & Aragão, C. (2010). Dietary taurine supplementation enhances metamorphosis and growth potential of Solea senegalensis larvae. Aquaculture, 309(1–4), 159–164. https://doi.org/10.1016/j.aquaculture.2010.08.031

Poppi, D. A., Moore, S. S., Wade, N. M., & Glencross, B. D. (2020). Adequate supply of dietary taurine stimulates expression of molecular markers of growth and protein turnover in juvenile barramundi (Lates calcarifer). Fish Physiology and Biochemistry, 46(3), 953–969. https://doi.org/10.1007/s10695-020-00762-3

Puffer, A.B. , Erine E. Meschter, Mark W. Musch, and L. G. (2006). Membrane Trafficking Factors are Involved in the Hypotonic Activation of the Taurine Channel in the Little Skate (Raja erinacea) Red Blood Cell. JOURNAL OF EXPERIMENTAL ZOOLOGY 305A:594–601 (2006), 305A. https://doi.org/DOI: 10.1002/jez.a.292.

Qi, G., Ai, Q., Mai, K., Xu, W., Liufu, Z., Yun, B., & Zhou, H. (2012). Effects of dietary taurine supplementation to a casein-based diet on growth performance and taurine distribution in two sizes of juvenile turbot (Scophthalmus maximus L.). Aquaculture, 358–359, 122–128. https://doi.org/10.1016/j.aquaculture.2012.06.018

Ridwan, M. Natsir Nessa, Haryati, D. D. Trijuno. (2017). Effect of Dietary Taurine Enrichment Levels on Growth Performance, Survival and Metamorphosis of Humpback Grouper Cromileptes altivelis. International Journal of Sciences: Basic and Applied Research (IJSBAR), 34(2), 209-221, 34(2), 209–221. http://gssrr.org/index.php?journal=JournalOfBasicAndApplied

Rotman, F., Stuart, K., & Drawbridge, M. (2017). Effects of taurine supplementation in live feeds on larval rearing performance of California yellowtail Seriola lalandi and white seabass Atractoscion nobilis. Aquaculture Research, 48(3), 1232–1239. https://doi.org/10.1111/are.12964

Ruliaty, Lisa; Sumarwan, Joko; Handayani, Retno; Susanto, A. (2014). Metode Skoring_Cara Terukur untuk Mendapatkan Benih Udang Berkualitas. Kementerian Kelautan Dan Perikanan, Direktorat Jenderal Perikanan Budidaya, Balai Besara Perikanan Budidaya Air Payau.

Salze, G., Craig, S. R., Smith, B. H., Smith, E. P., & Mclean, E. (2011). Morphological development of larval cobia Rachycentron canadum and the influence of dietary taurine supplementation. Journal of Fish Biology, 78(5), 1470–1491. https://doi.org/10.1111/j.1095-8649.2011.02954.x

Salze, Guillaume, McLean, E., & Craig, S. R. (2012a). Dietary taurine enhances growth and digestive enzyme activities in larval cobia. Aquaculture, 362–363, 44–49. https://doi.org/10.1016/j.aquaculture.2012.07.021

Salze, Guillaume, McLean, E., & Craig, S. R. (2012b). Pepsin ontogeny and stomach development in larval cobia. Aquaculture, 324–325, 315–318. https://doi.org/10.1016/j.aquaculture.2011.09.043

To, V. A., Liou, C. H., & Yang, S. Der. (2021). Can dietary with a taurine supplement improve lipid utilization, growth performance, haemolymph parameters and immune responses of white shrimp (Litopenaeus vannamei)? Aquaculture Research, July, 1–14. https://doi.org/10.1111/are.15532

Van der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H. J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2–4), 375–397. https://doi.org/10.1016/j.aquaculture.2007.11.041

Wehner, F., Olsen, H., Tinel, H., Kinne-Saffran, E., & Kinne, R. K. (2003). Cell volume regulation: osmolytes, osmolyte transport, and signal transduction. Reviews of Physiology, Biochemistry and Pharmacology, 148, 1–80. https://doi.org/10.1007/s10254-003-0009-x

Yue, Y. R., Liu, Y. J., Tian, L. X., Gan, L., Yang, H. J., Liang, G. Y., & He, J. Y. 2(013). The effect of dietary taurine supplementation on growth performance, feed utilization and taurine contents in tissues of juvenile white shrimp (Litopenaeus vannamei, Boone, 1931) fed with low-fishmeal diets. Aquaculture Research, 44(8), 1317–1325. https://doi.org/10.1111/j.1365-2109.2012.03135.x

Zachariassen, K. E., Olsen, A. J., & Aunaas, T. (1996). The effect of formaldehyde exposure on the transmembrane distribution of free amino acids in muscles of Mytilus edulis. Journal of Experimental Biology, 199(6), 1287–1294. https://doi.org/10.1242/jeb.199.6.1287

Zheng, K., Qin, B., & Chang, Q. (2016). Effect of graded levels of taurine on growth performance and Ptry expression in the tongue sole (Cynoglossus semilaevis) postlarvae. Aquaculture Nutrition, 22(6), 1361–1368. https://doi.org/10.1111/anu.12345

Published

15-12-2021

Issue

Section

Articles