Fluctuations in Soil Temperature and Moisture in Various Types of Agricultural Land Use: Implications of Soil Physical Properties

Authors

  • Riskawati Universitas Muhammadiyah Sorong, Indonesia
  • Azalia Fajri Yasin Universitas Muhammadiyah Sorong, Indonesia
  • Fredy Titit Universitas Muhammadiyah Sorong, Indonesia

DOI:

https://doi.org/10.31850/jgt.v14i3.1341

Keywords:

fluctuation, soil physics, moisture, temperature, land use

Abstract

Climate change impacts all aspects of life including agriculture, which influences land management practices, soil temperature and moisture, and land use types. This research aims to identify soil temperature and moisture fluctuations across various agricultural land cover types and their relationship to soil physical properties. This research was conducted in Mariat District, Sorong Regency, on four types of land use and was selected intentionally (purposive sampling). The coordinates of each type of land are: Rice Field 075°77’35’’E 98°88’12”SL; Garden land: 075°75’82”E, 98°88’09”SL; Agroforestry land: 075°74’30”E, 98°88’01”SL; and Unproductive land 075°76’30”E, 98°88’80”SL. Measurement of soil temperature and humidity using environment-meter for 30 consecutive days and soil sampling was carried out (intact soil samples and disturbed soil samples) to identify the physical properties of the soil. The research results showed fluctuations in soil temperature and moisture content across each land use. In general, the average morning temperature was 27.2°C, midday 32°C, and evening 27.5°C. Meanwhile, the average soil moisture content was 79.5% in the morning, 74% in the afternoon, and 81% in the evening. The physical properties of the soil in the four land uses are different in soil texture, soil color, available water, permeability, and aggregate stability. The use of rice fields and dry fields has the same temperature and humidity. However, the use of gardens and agroforestry land tends to differ because variations influence plant vegetation. Temperatures too high and humidity too low can worsen soil conditions, causing physical degradation that affects agricultural productivity and soil sustainability.

Author Biographies

Riskawati, Universitas Muhammadiyah Sorong

Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Sorong

Azalia Fajri Yasin, Universitas Muhammadiyah Sorong

Department of Environmental Engineering, Faculty of Engineering, Universitas Muhammadiyah Sorong

Fredy Titit, Universitas Muhammadiyah Sorong

Department of Agrotechnology, Faculty of Agriculture, Universitas Muhammadiyah Sorong

References

[BPS] Badan Pusat Statistik. Distrik Mariat dalam Angka 2023. (2023). https://sorongkab.bps.go.id/id/publication/2023/09/26/4c831e89e5bdc6d414a47e33/distrik-mariat-dalam-angka-2023.html

[RPD] Rencana Pembangunan Daerah Pemerintah Kabupaten Sorong tahun 2023-2026. Kabupaten Sorong. (2023). https://anyflip.com/amlnp/vcye

Ali, A., Maruapey, A., & Soekamto, M. H. (2021). Usaha Tani Padi Sawah Berbasis Agrosilvopastura Di Kampung Walal Distrik Salawati Kabupaten Sorong. Abdimas: Papua Journal of Community Service, 3(1), 29–33. https://doi.org/10.33506/pjcs.v1i1.1079

Alskaf, K., Mooney, S. J., Sparkes, D. L., Wilson, P., & Sjögersten, S. (2021). Short-term impacts of different tillage practices and plant residue retention on soil physical properties and greenhouse gas emissions. Soil and Tillage Research, 206 (1). 104803. https://doi.org/10.1016/j.still.2020.104803

Azmi, E. N. (2019). Dinamika temperatur dan kelembaban tanah serta dampaknya terhadap pertumbuhan dan produksi tanaman kopi dalam sistem agroforestri (pp. 1–62). [Disertasi]. Universitas Brawijaya. Malang. Jawa Timur.

Blanco-Canqui, H., & Ruis, S. J. (2018). No-tillage and soil physical environment. Geoderma, 326 (2), 164–200. https://doi.org/10.1016/j.geoderma.2018.03.011

Chen, Q., Zhang, X., Sun, L., Ren, J., Yuan, Y., & Zang, S. (2021). Influence of tillage on the mollisols physicochemical properties, seed emergence, and yield of maize in northeast china. Agriculture (Switzerland), 11 (10), 1–13. https://doi.org/10.3390/agriculture11100939

Fischer, J., Abson, D. J., Butsic, V., Chappell, M. J., Ekroos, J., Hanspach, J., Kuemmerle, T., Smith, H. G., & von Wehrden, H. (2014). Land sparing versus land sharing: Moving forward. Conservation Letters, 7 (3), 149–157. https://doi.org/10.1111/conl.12084

Fu, Y., de Jonge, L. W., Moldrup, P., Paradelo, M., & Arthur, E. (2022). Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma, 425. https://doi.org/10.1016/j.geoderma.2022.116062

Godoy, D., Dewbre, J., PIN, Amegnaglo, C. J., Soglo, Y. Y., Akpa, A. F., Bickel, M., Sanyang, S., Ly, S., Kuiseu, J., Ama, S., Gautier, B. P., Officer, E. S., Officer, E. S., Eberlin, R., Officer, P., Branch, P. A., Oduro-ofori, E., Aboagye Anokye, P., Swanson, B. E. (2014). The future of food and agriculture: trends and challenges. In The future of food and agriculture: trends and challenges (Vol. 4, Issue 4).

Grzywna, A., & Ciosmak, M. (2021). The Assesment of Physical Variables of the Soil Quality Index in the Coal Mine Spoil. Journal of Ecological Engineering, 22 (3), 143–150. https://doi.org/10.12911/22998993/132431

He, G., Wang, Z., & Cui, Z. (2020). Managing irrigation water for sustainable rice production in China. Journal of Cleaner Production, 245, 118928. https://doi.org/10.1016/j.jclepro.2019.118928

Hidayati, I. N., & Suryanto. (2015). Pengaruh perubahan iklim terhadap produksi pertanian dan strategi adaptasi pada lahan rawan kekeringan. Jurnal Ekonomi Dan Studi Pembangunan, 16 (1), 42–52.

Islam, M. U., Jiang, F., Guo, Z., & Peng, X. (2021). Does biochar application improve soil aggregation? A meta-analysis. Soil and Tillage Research, 209 (1). 104926. https://doi.org/10.1016/j.still.2020.104926

Li, R., Zheng, J., Xie, R., Ming, B., Peng, X., Luo, Y., Zheng, H., Sui, P., Wang, K., Hou, P., Hou, L., Zhang, G., Bai, S., Wang, H., Liu, W., & Li, S. (2022). Potential mechanisms of maize yield reduction under short-term no-tillage combined with residue coverage in the semi-humid region of Northeast China. Soil and Tillage Research, 217 (12), 105289. https://doi.org/10.1016/j.still.2021.105289

Lovell, S. T. (2010). Multifunctional urban agriculture for sustainable land use planning in the United States. Sustainability, 2 (8), 2499–2522. https://doi.org/10.3390/su2082499

Mosquera-Losada, M. R., Santiago-Freijanes, J. J., Rois-Díaz, M., Moreno, G., den Herder, M., Aldrey-Vázquez, J. A., Ferreiro-Domínguez, N., Pantera, A., Pisanelli, A., & Rigueiro-Rodríguez, A. (2018). Agroforestry in Europe: A land management policy tool to combat climate change. Land Use Policy, 78 (1), 603–613. https://doi.org/10.1016/j.landusepol.2018.06.052

Muslim, C. (2013). Mitigasi Perubahan Iklim dalam Mempertahankan Produktivitas Tanah Padi Sawah (Studi kasus di Kabupaten Indramayu) Climate Change Mitigation In Maintaining Land Productivity Rice Rice Fields (Cases; Regency of Indramayu). Jurnal Penelitian Pertanian Terapan, 13 (3), 211–222.

Osborne, T. M., & Wheeler, T. R. (2013). Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environmental Research Letters, 8 (2). 024001. https://doi.org/10.1088/1748-9326/8/2/024001

Pandoh, N., Taunaumang, H., & Nusa, J. G. (2021). Profil Vertikal Hantaran Panas Bawah Permukaan Manifestasi Panas Bumi Di Bagian Barat Gunung Tampusu. Jurnal FisTa?: Fisika Dan Terapannya, 2 (1), 1–9. https://doi.org/10.53682/fista.v2i1.98

Papadopoulou, M. P., Charchousi, D., Spanoudaki, K., Karali, A., Varotsos, K. V., Giannakopoulos, C., Markou, M., & Loizidou, M. (2020). Agricultural water vulnerability under climate change in Cyprus. Atmosphere, 11 (6). 1 - 22. https://doi.org/10.3390/atmos11060648

Riskawati, R., Baskoro, D. P. T., & Rachman, L. M. (2021). Analysis of soil physical quality index (case study: groundnut/ Arachis hypogeal L.). E3S Web of Conferences, 306 (1), 1–10. https://doi.org/10.1051/e3sconf/202130602052

Said Mohamed, E., Belal, A. A., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. Egyptian Journal of Remote Sensing and Space Science, 24 (3), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007

Salem, H. M., Munoz-Garcia, M.-A., & Rodriguez, M. G. (2021). Soil physical properties and soil water tension monitoring by wireless sensor network after reservoir and minimum tillage practices. Soil Research, 59 (3), 309–317. https://doi.org/10.1071/SR20129

Šalkauskien?, V., Gudritien?, D., & Abalikštien?, E. (2019). Analysis of the non-productive land use in Lithuania. Land Use Policy, 80 (1), 135–141. https://doi.org/10.1016/j.landusepol.2018.10.010

Semin, A. N., & Namyatova, L. E. (2019). Land as a factor of production in agriculture and features of agricultural practices. International Journal of Mechanical Engineering and Technology, 10 (2), 1515–1521.

Shen, Y., McLaughlin, N., Zhang, X., Xu, M., & Liang, A. (2018). Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-22822-8

Stockstad, A. B., Slesak, R. A., Toczydlowski, A. J., Blinn, C. R., Kolka, R. K., & Sebestyen, S. D. (2022). The effects of combined throughfall reduction and snow removal on soil physical properties across a drainage gradient in aspen forests of northern Minnesota, USA. Forest Ecology and Management, 524 (8). 120538. https://doi.org/10.1016/j.foreco.2022.120538

Thoriq, A., Hasta Pratopo, L., Mulya Sampurno, R., & Hisyam Shafiyullah, S. (2022). Rancang Bangun Sistem Monitoring Suhu dan Kelembaban Tanah. Jurnal Keteknikan Pertanian, 10 (3), 268–280. https://doi.org/10.19028/jtep.010.3.268-280

Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108

Tomasek, B. J., Williams, M. M., & Davis, A. S. (2017). Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE, 12(2), 1–15. https://doi.org/10.1371/journal.pone.0172301

Tresch, S., Moretti, M., Bayon, R. C. Le, Mäder, P., & ... (2018). A gardener’s influence on urban soil quality. Frontiers in Environmental Science. 6 (1). 1 - 17. https://doi.org/10.3389/fenvs.2018.00025

Van Dung, T., Ngoc, N. P., Van Dang, L., & Hung, N. N. (2022). Impact of cover crop and mulching on soil physical properties and soil nutrients in a citrus orchard. PeerJ, 10. 1 - 15. https://doi.org/10.7717/peerj.14170

Wang, C., Ai, S., Chen, Q., Li, J., Ding, J., & Yang, F. (2024). Effect of strip tillage widths on soil moisture, soil temperature and soil structure in northeast China. Frontiers in Environmental Science, 12(May), 1–11. https://doi.org/10.3389/fenvs.2024.1404971

Xie, H., Chen, L., & Shen, Z. (2015). Assessment of Agricultural Best Management Practices Using Models: Current Issues and Future Perspectives. Water (Switzerland), 7(3), 1088–1108. https://doi.org/10.3390/w7031088

Zhang, J., Wang, L., & Su, J. (2018). The soil water condition of a typical agroforestry system under the policy of Northwest China. Forests, 9(12), 1–15. https://doi.org/10.3390/f9120730

Zhang, Z., Yan, L., Wang, Y., Ruan, R., Xiong, P., & Peng, X. (2022). Bio-tillage improves soil physical properties and maize growth in a compacted Vertisol by cover crops. Soil Science Society of America Journal, 86(2), 324–337. https://doi.org/10.1002/saj2.20368

Zhu, L., Wang, H., Tong, C., Liu, W., & Du, B. (2019). Evaluation of ESA active, passive and combined soil moisture products using upscaled ground measurements. Sensors (Switzerland), 19(12). https://doi.org/10.3390/s19122718

Downloads

Published

18-12-2025

How to Cite

Riskawati, Yasin, A. F., & Titit, F. (2025). Fluctuations in Soil Temperature and Moisture in Various Types of Agricultural Land Use: Implications of Soil Physical Properties. Journal Galung Tropika, 14(3), 290–303. https://doi.org/10.31850/jgt.v14i3.1341

Issue

Section

Articles

Citation Check

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.